To evaluate a line integral of the form $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{r}=\langle x(t), y(t), z(t)\rangle, a \leq t \leq b$:

- $\operatorname{set} \mathbf{r}(t)=\langle x, y, z\rangle$
- write \mathbf{F} in terms of t
- evaluate $\int_{a}^{b} \mathbf{F} \cdot \mathbf{r}^{\prime}(t) d t$
(WW 16) Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=\langle 4 x, 3 y,-2 z\rangle$ and C is given by the vector function $\mathbf{r}(t)=\langle\sin t, \cos t, t\rangle, 0 \leq t \leq 3 \pi / 2$.

We know $\mathbf{r}(t)=\langle\sin t, \cos t, t\rangle$, so equating component functions gives

$$
x=\sin t, y=\cos t, z=t
$$

This means that

$$
\begin{gathered}
\mathbf{F}=\langle 4 x, 3 y,-2 z\rangle=\langle 4 \sin t, 3 \cos t,-2 t\rangle \text { and } \\
\mathbf{r}^{\prime}(t)=\langle\cos t,-\sin t, 1\rangle, \text { so } \\
\mathbf{F} \cdot \mathbf{r}^{\prime}(t)=4 \sin t \cos t-3 \sin t \cos t-2 t=\sin t \cos t-2 t .
\end{gathered}
$$

So the relevant integral is

$$
\int_{0}^{3 \pi / 2} \sin t \cos t-2 t d t
$$

Recall that $2 \sin t \cos t=\sin (2 t)$, so $\sin t \cos t=\frac{1}{2} \sin (2 t)$. So the integral is

$$
\int_{0}^{3 \pi / 2} \frac{1}{2} \sin (2 t)-2 t d t=\left.\left(-\frac{1}{4} \cos (2 t)-t^{2}\right)\right|_{t=0} ^{t=3 \pi / 2}=\frac{2-9 \pi^{2}}{4}
$$

Earlier we talked about conservative vector fields. Well why do we care if they're conservative or not? Setting up line integrals can take a lot of computation, but it turns out that if \mathbf{F} is a conservative vector field, then after finding a potential function f (i.e., $\mathbf{F}=\nabla f$), then the value of the line integral from A to B is the same for ANY curve, and it can be computed by $f(B)-f(A)$. This is the fundamental theorem of Calculus for line integrals.
(WW 13) Let $\mathbf{F}=\langle x, y\rangle$. Compute $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}$ and $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$, where C_{1} is the parabola $x=t, y=t^{2}, 0 \leq t \leq 3$ and C_{2} is the line segment $x=3 t^{2}, y=9 t^{2}, 0 \leq t \leq 1$.

In both cases, the start and endpoints of the curve are $(0,0)$ and $(3,9)$. By inspection, \mathbf{F} is conservative and a potential is

$$
f(x, y)=\frac{1}{2} x^{2}+\frac{1}{2} y^{2}
$$

So by the previous discussion, the line integral for BOTH paths is

$$
f(3,9)-f(0,0)=90 / 2-0 / 2=45 .
$$

You can check this by parametrizing both curves and in both cases the answer will be 45 .

