
CSC345 Discussion, 09/29/17

Find kth smallest element of array using heaps

Assume A has n elements with n > k. How can we find the kth smallest element in
O(n log k) time?

Create a max heap of size k. First build the heap using the first k elements of A. This
takes O(k) time.

Next, for i = k+ 1 to n: if A[i] > root (max) of heap, ignore (continue). This is because
if A[i] is larger than k other elements of A, it can’t be the kth smallest. (If A[i] = root,
we can also ignore since deleting a max and inserting the same value is not a very fruitful
operation.) If A[i] < root, then the root is larger than at least k elements and we must
delete max and insert A[i] into the heap.

This algorithm uses the invariant that after j iterations, the root of the heap is the kth
smallest element of the subarray A[1..k + j].

After the loop, extract the max: this is the kth smallest element of A. This algorithm
runs in O(n log k) time. This is not as good as the expectedO(n) time “quickselect” algorithm
(i.e., quicksort, but only recurse on one half), but it’s much higher-level and easier to
implement mistake-free (provided you have access to a heap library).

Number of simple graphs with n vertices

A graph G = (V,E) is a collection of vertices and edges between them. A simple graph
means there are no loops and no more than one edge between two vertices. For example:

1 2

3

4 5

Here, V = {1, 2, 3, 4, 5} and E = {{1, 2}, {1, 3}, {2, 3}, {4, 5}}.
Question: how many simple graphs are there with n nodes?
Let’s consider a “full” graph — i.e., one where there’s an edge between every pair of

nodes. There are n− 1 edges from vertex 1, n− 2 from vertex 2, n− 3 from vertex 3, . . . ,
2 from vertex n− 3, and 1 from vertex n− 2.

Thus a “full” (the proper term is complete) graph has

1 + 2 + . . . + (n− 1) =
n(n− 1)

2

edges.
But this doesn’t answer how many graphs are possible on n vertices. To answer this,

consider every possible edge from the complete graph. There are two choices — this edge
is either in a given graph or not. So the total number of graphs is

2n−12n−2 · · · 2221 = 21+2+...+(n−1) = 2n(n−1)/2.

Pollard’s Rho algorithm for factoring integers

Suppose we want to factor n = 15811. (This is a product of two primes.) Let’s pick a
simple quadratic polynomial, such as f(x) = x2 + 1, and set x1 = y1 = 2.

Keep on computing xi = f(xi−1), yi = f(f(yi−1)). Our goal is to find gcd(|xi− yi|, n) =
some prime number (then we can divide n by this prime and obtain the other prime).

So compute (these are all mod n):

x2 = 5, y2 = 26

1

x3 = 26, y3 = 15622, gcd(15622− 26, 15811) = 1

x4 = 677, y4 = 2908, gcd(2908− 677, 15811) = 97

Thus 97 is a factor of 15811. In fact, 15811 = 97×163. 163 is prime, so n is fully factored
(if it weren’t, we could repeat this idea to factor a smaller number, which is generally easier).

What happened here? Let P0 = 2, P1 = f(P0), P2 = f(P1), etc. We have two sequences
Pi, P2i. Applying these sequences, we compare:

P1 with P2

P2 with P4

P3 with P6

At some point, we’re going to get equality. Why? We certainly get equality Pi = Pj by
the Pigeonhole Principle since there are only finitely many points.

(Image source: Elliptic Curves: Number Theory and Cryptography by Washington)
Can you prove we get an equality where j = 2i?
Notes:
(1) This is a probabilistic algorithm in the sense that the gcd will probably yield a factor

of n within O(
√
p) iterations for some prime factor p of n (i.e., O(n1/4)). We may only get

gcd = n, in which case we can try a different seed (instead of 2) or a different function (e.g.,
x2 + 2).

(2) I said that we have Pi = Pj at some point. What this really means is gcd(Pi−Pj , n) =
d for some divisor d of n (hopefully a prime!). Equality means that Pi ≡ Pj (mod d). If
Pi ≡ Pj (mod d), then Pi − Pj = dk for some integer k. Let’s suppose n = dc. As long as
k isn’t a multiple of c, we get a proper factor of n. Otherwise, we get gcd(Pi − Pj , n) = n
and we have to choose a different seed or different function.

(3) gcd can be computed very quickly (logarithmic time). Primality checking can also
be done very efficiently (but factoring is hard).

(4) See https://github.com/ablumenf/factoring/blob/master/factoring.py if you
want to play around with Pollard Rho for factoring integers.

2

https://github.com/ablumenf/factoring/blob/master/factoring.py

