CSC345 Discussion, 09/29/17

Find k th smallest element of array using heaps

Assume A has n elements with $n>k$. How can we find the k th smallest element in $O(n \log k)$ time?

Create a max heap of size k. First build the heap using the first k elements of A. This takes $O(k)$ time.

Next, for $i=k+1$ to n : if $A[i]>\operatorname{root}(\max)$ of heap, ignore (continue). This is because if $A[i]$ is larger than k other elements of A, it can't be the k th smallest. (If $A[i]=$ root, we can also ignore since deleting a max and inserting the same value is not a very fruitful operation.) If $A[i]<$ root, then the root is larger than at least k elements and we must delete max and insert $A[i]$ into the heap.

This algorithm uses the invariant that after j iterations, the root of the heap is the k th smallest element of the subarray $A[1 . . k+j]$.

After the loop, extract the max: this is the k th smallest element of A. This algorithm runs in $O(n \log k)$ time. This is not as good as the expected $O(n)$ time "quickselect" algorithm (i.e., quicksort, but only recurs on one half), but it's much higher-level and easier to implement mistake-free (provided you have access to a heap library).

Number of simple graphs with n vertices

A graph $G=(V, E)$ is a collection of vertices and edges between them. A simple graph means there are no loops and no more than one edge between two vertices. For example:

Here, $V=\{1,2,3,4,5\}$ and $E=\{\{1,2\},\{1,3\},\{2,3\},\{4,5\}\}$.
Question: how many simple graphs are there with n nodes?
Let's consider a "full" graph - i.e., one where there's an edge between every pair of nodes. There are $n-1$ edges from vertex $1, n-2$ from vertex $2, n-3$ from vertex $3, \ldots$, 2 from vertex $n-3$, and 1 from vertex $n-2$.

Thus a "full" (the proper term is complete) graph has

$$
1+2+\ldots+(n-1)=\frac{n(n-1)}{2}
$$

edges.
But this doesn't answer how many graphs are possible on n vertices. To answer this, consider every possible edge from the complete graph. There are two choices - this edge is either in a given graph or not. So the total number of graphs is

$$
2^{n-1} 2^{n-2} \cdots 2^{2} 2^{1}=2^{1+2+\ldots+(n-1)}=2^{n(n-1) / 2}
$$

Pollard's Rho algorithm for factoring integers

Suppose we want to factor $n=15811$. (This is a product of two primes.) Let's pick a simple quadratic polynomial, such as $f(x)=x^{2}+1$, and set $x_{1}=y_{1}=2$.

Keep on computing $x_{i}=f\left(x_{i-1}\right), y_{i}=f\left(f\left(y_{i-1}\right)\right)$. Our goal is to find $\operatorname{gcd}\left(\left|x_{i}-y_{i}\right|, n\right)=$ some prime number (then we can divide n by this prime and obtain the other prime).

So compute $($ these are all $\bmod n)$:

$$
x_{2}=5, y_{2}=26
$$

$$
\begin{aligned}
& x_{3}=26, y_{3}=15622, \operatorname{gcd}(15622-26,15811)=1 \\
& x_{4}=677, y_{4}=2908, \operatorname{gcd}(2908-677,15811)=97
\end{aligned}
$$

Thus 97 is a factor of 15811 . In fact, $15811=97 \times 163.163$ is prime, so n is fully factored (if it weren't, we could repeat this idea to factor a smaller number, which is generally easier). What happened here? Let $P_{0}=2, P_{1}=f\left(P_{0}\right), P_{2}=f\left(P_{1}\right)$, etc. We have two sequences $P_{i}, P_{2 i}$. Applying these sequences, we compare:

$$
\begin{aligned}
& P_{1} \text { with } P_{2} \\
& P_{2} \text { with } P_{4} \\
& P_{3} \text { with } P_{6}
\end{aligned}
$$

At some point, we're going to get equality. Why? We certainly get equality $P_{i}=P_{j}$ by the Pigeonhole Principle since there are only finitely many points.

(Image source: Elliptic Curves: Number Theory and Cryptography by Washington) Can you prove we get an equality where $j=2 i$?
Notes:
(1) This is a probabilistic algorithm in the sense that the gcd will probably yield a factor of n within $O(\sqrt{p})$ iterations for some prime factor p of n (i.e., $O\left(n^{1 / 4}\right)$). We may only get $\operatorname{gcd}=n$, in which case we can try a different seed (instead of 2) or a different function (e.g., $x^{2}+2$).
(2) I said that we have $P_{i}=P_{j}$ at some point. What this really means is $\operatorname{gcd}\left(P_{i}-P_{j}, n\right)=$ d for some divisor d of n (hopefully a prime!). Equality means that $P_{i} \equiv P_{j}(\bmod d)$. If $P_{i} \equiv P_{j}(\bmod d)$, then $P_{i}-P_{j}=d k$ for some integer k. Let's suppose $n=d c$. As long as k isn't a multiple of c, we get a proper factor of n. Otherwise, we get $\operatorname{gcd}\left(P_{i}-P_{j}, n\right)=n$ and we have to choose a different seed or different function.
(3) gcd can be computed very quickly (logarithmic time). Primality checking can also be done very efficiently (but factoring is hard).
(4) Seehttps://github.com/ablumenf/factoring/blob/master/factoring.py if you want to play around with Pollard Rho for factoring integers.

