AES Notes
 Aaron Blumenfeld

AES has 10 rounds for 128 bits, 12 for 192 bits, 14 for 256 bits. Consider 128 bit AES. There are 4 steps: ByteSub (BS), ShiftRow (SR), MixColumn (MC), and AddRoundKey (ARK).

Encryption: ARK with 0th round key (which is the original key); nine rounds of BS, SR, MC, ARK with corresponding round keys; 10th round of BS, SR, ARK with 10th round key.

We have a 128 -bit input, split into 16 bytes. Put them into a 4×4 matrix column by column. Each byte represents an element of $\mathbb{F}_{256} \simeq \mathbb{F}_{2}[x] /\left(x^{8}+x^{4}+x^{3}+x+1\right)$.

ByteSub (BS): There is an S-box. The first four bits of a byte tell you the row, and the last four tell you the column. BS gives you a new matrix, formed byte-by-byte using the output of the S-box.

ShiftRow (SR): Shift four rows cyclically to the right by $0,1,2$, and 3 .
MixColumn (MC): Given input matrix M, you get the output matrix N with

$$
N=\left(\begin{array}{cccc}
x & x+1 & 1 & 1 \\
1 & x & x+1 & 1 \\
1 & 1 & x & x+1 \\
x+1 & 1 & 1 & x
\end{array}\right) M
$$

AddRoundKey (ARK): A round key is 128 -bits. Put it into a 4 x 4 matrix of 16 bytes column-by-column and add (XOR) entry-by-entry (byte-by-byte) to the input matrix.

Computing the Round Keys: Put the original key into a 4 x 4 matrix (16 bytes). Expand the matrix by adding 40 more columns. Each column i is called $W(i)$. The round key for round i is the matrix with columns $W(4 i), W(4 i+1), W(4 i+2), W(4 i+3)$.

To define $W(4)$ through $W(43)$, we know $W(0)$ through $W(3)$, so define:

$$
W(i)=\left\{\begin{array}{lll}
W(i-4) \oplus W(i-1) & \text { if } i \not \equiv 0 & (\bmod 4) \\
W(i-4) \oplus T(W(i-1)) & \text { if } i \equiv 0 & (\bmod 4)
\end{array}\right.
$$

Now to form $T(W(i-1))$, let $W(i)=\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)$. Then shift $W(i)$ up cyclically to form $\left(\begin{array}{l}b \\ c \\ d \\ a\end{array}\right)$.
Replace each byte in this column vector with the corresponding bytes in the S-box from BS to get $\left(\begin{array}{l}e \\ f \\ g \\ h\end{array}\right)$. Compute the round constant $r(i)=x^{(i-4) / 4}$. Then

$$
T(W(i-1))=\left(\begin{array}{c}
e \oplus r(i) \\
f \\
g \\
h
\end{array}\right)
$$

Decryption: ARK with 10th round key; nine rounds of inverse BS, inverse SR, inverse MC, inverse ARK with round keys 9 to 1 ; inverse BS, inverse SR, ARK with 0th round key.

