DES Exercise

Aaron Blumenfeld

Show that if the DES key K encrypts P to C, then \bar{K} encrypts \bar{P} to \bar{C}.
Proof. First observe that since any K_{i} is obtained from K by a permutation, shifts, and extraction of bits, if K gives us the subkeys K_{i}, then \bar{K} gives us the subkeys $\overline{K_{i}}$, so assume for notational convenience that K is one of the subkeys.

Now the first step is the initial permutation. It's fairly evident that $\operatorname{perm}(\bar{P})=\overline{\operatorname{perm}(P)}$. The next step is the 16 rounds of DES with the equations

$$
L_{i}=R_{i-1} \text { and } R_{i}=L_{i-1} \oplus f\left(R_{i-1}, K_{i}\right)
$$

We will see that for one round $R(P), R(\bar{P})=\bar{C}$ when $R(P)=C$. Then the result follows for 16 rounds. Finally, we switch left and right halves and apply perm ${ }^{-1}$, which clearly also preserves complementation.

Now for one round, write $P=P_{0} P_{1}, C=C_{0} C_{1}$. We know $C_{0}=P_{1}$ and $C_{1}=P_{0} \oplus f\left(P_{1}, K\right)$. We want to show that $\overline{P_{0} P_{1}} \mapsto \overline{C_{0} C_{1}}$. We know that $\overline{P_{1}}=\overline{C_{0}}$, so it suffices to show that $\overline{P_{0}} \oplus f\left(\overline{P_{1}}, \bar{K}\right)=\overline{C_{1}}$.

Since $C_{1}=P_{0} \oplus f\left(P_{1}, K\right)$, we have $\overline{C_{1}}=\overline{P_{0} \oplus f\left(P_{1}, K\right)}=\overline{P_{0}} \oplus f\left(P_{1}, K\right)$, so we show $f\left(\overline{P_{1}}, \bar{K}\right)=f\left(P_{1}, K\right)$.

Now f first expands P_{1}, then XORs $E\left(P_{1}\right) \oplus K$, then the S-box stuff. Expanding bits clearly preserves complementing, in other words, $E\left(\overline{P_{1}}\right)=\overline{E\left(P_{1}\right)}$, and $E\left(P_{1}\right) \oplus K=\overline{E\left(P_{1}\right)} \oplus \bar{K}$. From this equality, the output of the S -boxes must be the same, and the result follows.

Remark: We used the facts that $\bar{S}=S+1$, and $1+1=0$, where 1 and 0 denote the strings of all 1 s and all 0 s , respectively. These also imply that $\overline{S+T}=S+T+1=\bar{S}+T$, and that $\bar{S}+\bar{T}=S+1+T+1=S+T$.

