MATH 132

HILL CIPHER (CRYPTOGRAPHY)

The Hill Cipher works as follows. We have an invertible matrix A of size 2×2 (or $3 \times 3,4 \times 4$, etc.). This matrix serves as the secret encryption key. We assume our message has length $2 n$ (or $3 n, 4 n$, etc.). If it doesn't have the right length, we can pad it with spaces at the end to obtain the right length. We convert our letters to numbers by space $=0, a=1, b=2, \ldots, z=26$, and put our message into a $2 \times n$ (or $3 \times n, 4 \times n$, etc.) matrix column by column. (Usually we discard spaces and work from 0 to 25 , but not in this class.)

We then calculate $C=A M$. We read the numbers from C column by column and convert back to letters to get the encrypted ciphertext. (If the number is greater than 26 , we can subtract 27 until the number lies in $[0,26]$. If the number is less than 0 , we can add 27 until the number lies in $[0,26]$.)

To decrypt, we put our numbers into a matrix column by column. This matrix is the encrypted matrix C. We first calculate A^{-1} and then $A^{-1} C$. This will be equal to M since $A^{-1} C=A^{-1}(A M)=\left(A^{-1} A\right) M=$ $I M=M$, where I is the identity matrix. We can then read the numbers out of M and convert back to letters.

In short, decryption is the same process as encryption, but with the matrix A^{-1} as the key instead of A.
Example: Let $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$. We will encrypt the message midway. This message has 6 letters, so we don't need to add any extra spaces at the end. Converting the letters to numbers, we have 139423125. Therefore,

$$
M=\left(\begin{array}{ccc}
13 & 4 & 1 \\
9 & 23 & 25
\end{array}\right)
$$

You can calculate $A M=C=\left(\begin{array}{ccc}31 & 50 & 51 \\ 40 & 73 & 76\end{array}\right)$. This means the encrypted message is 314050735176 . In order to convert this back to letters, we must "reduce" these numbers by subtracting multiples of 27 to get each number to lie in the interval [0, 26]. Doing so turns the numbers into 41323192422 . This corresponds to the ciphertext DMWSXV.

Now to decrypt, we just encrypt DMWSXV with the matrix A^{-1}. You can calculate $A^{-1}=\left(\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right)$.
Converting DMWSXV to numbers gives 41323192422 , so $C=\left(\begin{array}{ccc}4 & 23 & 24 \\ 13 & 19 & 22\end{array}\right)$. So we calculate $M=A^{-1} C=$ $\left(\begin{array}{ccc}-14 & 31 & 28 \\ 9 & -4 & -2\end{array}\right)$. This means the decrypted message is $-14931-428-2$. We must add (or subtract) 27 until each number lies in the interval [0,26]. Doing so turns the numbers into 139423125 , which corresponds to the plaintext message midway.

