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Abstract. The local-global principle establishes a one-to-one cor-
respondence between solvability of quadratic forms in the rational
numbers and the solvability of these forms in fields known as the
p-adic numbers. In this paper, we introduce the p-adic numbers,
state and prove the local-global principle, and discuss higher alge-
braic forms with respect to the local-global principle.

1. Introduction

Perhaps the most investigated area of number theory is whether
or not an equation has diophantine solutions. Sometimes the most
basic techniques of modular arithmetic and quadratic residues suffice
to show that an equation has no diophantine solutions. A more difficult
question is whether or not a given equation has rational solutions.

It may not be difficult to exhibit a particular rational solution if there
is one; on the other hand, if one can factor the equation, for example,
into linear factors and therefore find every real root, then show that
no root is rational, then such an equation certainly has no rational
solutions. In general, however, such questions in number theory are
very difficult to approach.

In the early 20th century, Kurt Hensel introduced the p-adic num-
bers, motivated by ideas of Laurent series. He realized that one could
extend such power series to series in powers of some prime, and the
analogy is quite strong – many deep properties are shared. Specif-

ically, a p-adic number is a number of the form
∞∑

n=−k

anp
n for some

integer k and a fixed prime p (each an is a residue modulo p). The
immediate question is whether such a definition makes sense – how can
this series actually converge to a number if the powers of p increase
without bound unless the coefficients become 0 at some point? Of
course, such a series could never converge in the real numbers because
the terms of the underlying sequence are increasing, but that’s because
of our standard of “closeness” – i.e., the Euclidean metric. If we view
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this through what’s known as the p-adic metric, then the higher pow-
ers of p become smaller and effectively vanish, allowing such a series
to converge. One thing to realize is that this definition of the p-adic
numbers is not totally rigorous. Specifically, they are what’s known
as the completion of the rational numbers with respect to the p-adic
metric, just as the real numbers can be defined as the completion of
the rational numbers with respect to the absolute value to which we’re
accustomed.

Once the theory of the p-adic numbers was sufficiently developed, the
Hasse-Minkowski theorem, more commonly known as the local-global
principle, was proved. This roughly states that a quadratic polynomial
has rational solutions if and only if it has solutions in every p-adic
field and in the real numbers. The rationals are the global field in this
case; each p-adic field and the real numbers are the local fields. In
this language, the theorem says that an equation has global solutions
if and only if it has local solutions everywhere. Since the rationals are
contained in every p-adic field and in the real numbers, necessity is
rather obvious. That this is a sufficient condition for the existence of
a rational solution is what’s remarkable. An algebraic form is said to
satisfy the Hasse principle (or the local-global principle) if this turns
out to be true. It is true for quadratic forms; for higher forms, it is
rare for a condition as strong as this one to be true, however.

In this paper, we provide an introduction to the p-adic numbers,
state and prove the local-global principle for quadratic forms in three
variables (for conics), and discuss the local-global principle with re-
spect to higher algebraic forms, showing that the principle does not, in
general, hold beyond quadratic forms.

2. p-adic Numbers

2.1. p-adic Valuations and Norms. Recall that an absolute value
on Q, the rational numbers, is a function | | : Q→ R that satisfies the
following three properties:
1) |x| = 0 if and only if x = 0
2) |x · y| = |x| · |y| for all x, y ∈ Q
3) |x+ y| ≤ |x|+ |y| for all x, y ∈ Q

Additionally, an absolute value is said to be non-Archimedean if it
satisfies |x+y| ≤max{|x|, |y|} for all x, y ∈ Q. This is in fact equivalent
to the statement that a norm is Archimedean if the natural numbers
are unbounded in Q [2]. This statement of the condition, however,
shows that in any (complete) non-Archimedean field (specifically, in
the field of p-adic numbers), a sequence (an) is Cauchy (and therefore
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convergent) as long as limn→∞ |an+1−an| = 0. Of course, this is not the
case in the real numbers (just consider the partial sums of the harmonic
series).

Also recall that a metric on Q is a function d : Q→ R such that:
1) d(x, y) ≥ 0 for all x, y ∈ Q; furthermore, d(x, y) = 0 if and only if
x = y
2) d(x, y) = d(y, x) for all x, y ∈ Q
3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ Q

It is easy to see that an absolute value naturally induces a metric d
defined by d(x, y) = |x− y|.

The typical example of an absolute value is | | : Q → R, where |x|
is the standard (Euclidean) absolute value on the real line. We now
proceed to define the p-adic norm on the Q. Before doing so, we define
the p-adic valuation on Z for a fixed prime p.

Definition 2.1. We define the p-adic valuation vp : Z\{0} → R to be
the unique nonnegative integer vp(n) = m such that n = pm ·n′, where
p - n′.

This is simply the highest power of p that divides n. We also extend
vp to the rationals as follows. If x = a

b
, then define vp(x) = vp(a)−vp(b).

Note that a and b need not be relatively prime. For example, v7(329) =
1, v3(18/36) = 2− 2 = 0 = v3(1/2).

Now we define the p-adic norm of any rational number:

Definition 2.2. If x ∈ Q, then the p-adic norm of x is given by |x|p =
p−vp(x). The convention is that |0|p = 0 (sometimes vp(0) is set to be∞
since we can always factor as many multiples of p out of 0 as we want
and still get 0; this is consistent with |0|p = p−∞ = 1/p∞ = 1/∞ = 0
if we think of “p∞” in the usual way).

One of the most important properties to notice about ||p is that for n
divisible by a large power of p, its image under the p-adic norm is small.
This is important when considering p-adic numbers since they can (and
usually do) have expansions with powers of p increasing without bound.

Note. From here on, we refer to the Euclidean absolute value as | |∞.
This convention may seem dubious at first, but it is useful since we
can now refer to the Euclidean absolute value as | |∞, and in the near
future, we will be able to refer to R in the context of the p-adic world
as Q∞.

2.2. p-adic Integers and Numbers. We can formally define the p-
adic numbers to be the completion of Q with respect to | |p. Two
Cauchy sequences are considered equivalent if their difference (with
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respect to | |p) tends to 0; the p-adic numbers can then be defined as
the set of equivalence classes under this equivalence relation. Following
through with this definition, however, would lead us too far astray
from the goal of this paper, and, indeed, would not be very useful in
understanding the p-adic numbers; such an excursion would only be of
use for showing their existence. So we define the p-adic numbers in a
more accessible (and equivalent) manner.

Definition 2.3. A p-adic integer is an infinite sum
∞∑
n=0

anp
n, where

each an ∈ {0, 1, 2, . . . , p− 1}. We denote the p-adic integers by Zp. We
sometimes write x ∈ Zp as x = . . . an . . . a2a1a0.

We can think of this intuitively as a power series in powers of p. Note
that this representation by the integers a0, a1, . . . , an, . . . is unique –
unlike in R, where 0.99999 . . . = 1.00000 . . ..

As mentioned before, most p-adic numbers have an infinite p-adic
expansion. Which ones don’t? These are simply the nonnegative inte-
gers, and their p-adic expansions are simply their expansions in base
p.

Example 2.4. To compute the 11-adic expansion of 229, we divide
the highest power of 11 possible into 229, find the quotient, subtract
11 times the quotient and repeat. Thus, 229 = 1·112+9·111+9·110. So
we have found that the 11-adic expansion of 229 is 9·110+9·111+1·112.
However, in order to emphasize the prime, it is often useful to write
this as 9 + 9p+ p2.

Now that we have the p-adic integers, it is time to define all the
p-adic numbers.

Definition 2.5. A p-adic number is defined by an infinite series
∞∑

n=−k

anp
n,

where k is some nonnegative integer, possibly 0 (in fact, −k is the p-adic
valuation of the number). If k > 0, then the sum is a p-adic number,
but not a p-adic integer (although we can multiply through by pk and
obtain a p-adic integer) unless, of course, a−k = a−k+1 = . . . = a−1 = 0.
We denote the p-adic numbers by Qp. We sometimes write x ∈ Qp as
x = . . . an . . . a2a1a0.a−1 . . . a−k.

One thing to notice is that Z ⊂ Q ⊂ Qp, although Q 6⊂ Zp(
1
p
6∈ Zp,

for instance). One can find the expansion of a rational number (or
integer) in Qp, or in the viewpoint of completing the rationals with
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respect to the p-adic absolute value, it is clear that any rational number
x is in Qp by considering the constant Cauchy sequence (x).

Let us now consider a couple of more interesting examples of p-adic
expansions.

Example 2.6. Here is a short proof that
√

2 is irrational. If

2 =

(
1

5k
a−k + . . .+

1

5
a−1 + a0 + 5a1 + 52a2 + . . .

)2

is a square of a rational number, then it is a square of a 5-adic number.
Perhaps this need not be in Zp, but upon multiplication by 52k, we see
that 2 · 52k must be a p-adic integer. Then

2 · 52k = (a−k + . . .+ 5k−1a−1 + 5ka0 + 5k+1a1 + 5k+2a2 + . . .)2.

Then 2 · 52k ≡ 0 ≡ a2−k (mod 5), so a−k ≡ 0 (mod 5). Since a−k
must be a residue modulo 5, it follows that a−k = 0. Removing a−k
from the preceding equation allows us to conclude in the same way that
for each ai with i < 0, ai = 0. Thus, 2 must be the square of a p-adic
integer, so

2 = (a0 + 5a1 + 52a2 + . . .)2.

It follows, then, that 2 ≡ a20 (mod 5). But 2 is a quadratic non-
residue modulo 5, so 2 is not a square in Q5, and consequently,

√
2 6∈ Q.

This is much more concise than the famous proof by contradiction,
although it does use considerably more sophisticated results.

We now state Hensel’s Lemma, as it will prove useful in several
examples. We will restate it and prove it in section 2.4.

Theorem 2.7. Suppose f(x) is a polynomial with coefficients in Zp.
If there exists α1 ∈ Zp such that f(α1) ≡ 0 (mod p) and f ′(α1) 6≡ 0
(mod p), then f(x) has a root in Zp (in other words, we can lift α1 to
a solution modulo any power of p).

Not only can we lift α1 to a solution modulo any power of p, but
if αn is the solution (mod pn), then αn ≡ αm (mod pm) whenever
1 ≤ m < n. This notion of the lifted solutions being congruent to
the previous solutions modulo lower powers of p defines a sequence of
integers that is said to be (p-adically) coherent.

Example 2.8. On the other hand, we can show that Qp is strictly
bigger than Q. For example, f(x) = x2 − 2 = 0 is solvable in Q7. We
can solve this by considering x2 ≡ 2 (mod 7). One solution is 3, so set
a0 = 3 (and f ′(3) = 6 6≡ 0 (mod 7)). Then x = 3 + 7k, so consider
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(3 + 7k)2 ≡ 9 + 42k ≡ 2 (mod 49)

⇒ 42k ≡ 42 (mod 49),

which gives k = 1. Thus, x ≡ 10 (mod 49). Continuing in this way, we
construct a coherent sequence (3, 10, 108, 2166, . . .). Now 10 = 3 + 1 ·
7, 108 = 10+2 ·72, 2166 = 108+6 ·73, . . .. So x = 3+7+2 ·72 +6 ·73 =
. . . 6213 in Z7. This is, in fact, a 7-adic square root of 2. If we had
taken our first number to be 4 instead of 3, we would have found the
other 7-adic square root of 2.

Example 2.9. Let’s compute 14
8

in Q5. We do this by considering
modular equations in powers of 5. We write

14

8
= a0 + 5a1 + 25a2 + 125a3 + . . . .

So 14
8
≡ 3 ≡ a0 (mod 5). So a0 = 3 since in general, any

ai ∈ {0, 1, . . . , p−1}. Now 14
8
≡ 8 (mod 25). So 8 = a0+a1p⇒ a1 = 1.

14

8
≡ 33 (mod 125)⇒ a0 + a1p+ a2p

2 = 3 + 1 · 5 + 25⇒ a2 = 1.

Similarly, we can find that a3 = 1, a4 = 1, a5 = 1, and so on. So in
Q5,

14
8

= 3 + p+ p2 + p3 + p4 + p5 + . . .. Since clearly 8 = 3 + p, if we

multiply out the expansion of 14
8

by 8, we obtain

(3 + p+ p2 + p3 + p4 + p5 + . . .)(3 + p)

= 9 + 6p+ 4p2 + 4p3 + 4p4 + 4p5 + . . .

= (4 + p) + 6p+ 4p2 + 4p3 + 4p4 + 4p5 + . . .

= 4 + (2p+ 5p) + 4p2 + 4p3 + 4p4 + 4p5 + . . .

= 4 + 2p+ (5p2 + 4p3) + 4p4 + 4p5 + . . .

= 4 + 2p+ (5p3 + 4p4) + 4p5 + . . .

= 4 + 2p+ (5p4 + 4p5) + . . .

= 4 + 2p+ 5p5 + . . .

= 4 + 2p+ . . .

= 4 + 2p,
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which is the 5-adic expansion of 14. Note that we were able to rearrange
the terms, observing that p = 5, so for example 5p3 + 4p4 = p4 + 4p4 =
5p4.

Example 2.10. Now let’s compute the p-adic expansion of −6 in Q11.
We proceed as before: −6 ≡ 5 (mod 11), so a0 = 5. −6 ≡ 115 ≡
5 + 10 · 11 (mod 121), so a1 = 10. Similarly, a2 = 10, a3 = 10, a4 =
10, a5 = 10, and so on. So −6 = 5+10p+10p2+10p3+10p4+10p5+. . ..
We can similarly check this computation by noting that the 11-adic
expansion of 6 is simply 6, so

− 6 + 6

= 11 + 10p+ 10p2 + 10p3 + 10p4 + . . .

= 11p+ 10p2 + 10p3 + 10p4 + . . .

= 11p2 + 10p3 + 10p4 + . . .

= 11p3 + 10p4 + . . .

= 11p4 + . . .

= . . .

= 0.

In fact, if the p-adic expansion of x is

a0 + a1p+ a2p
2 + a3p

3 + . . . ,

then

−x = (p−a0)+(p−1−a1)p+(p−1−a2)p2 + . . .+(p−1−an)pn + . . . .

As a corollary, this gives the p-adic expansion of −1 to be

(p− 1) + (p− 1)p+ (p− 1)p2 + (p− 1)p3 + . . .+ (p− 1)pn + . . . .

Just as in the case of the real numbers, a p-adic number is rational
if and only it is (eventually) periodic.

2.3. Arithmetic in Qp. In this section, we outline the basic algo-
rithms for p-adic arithmetic [3]. Addition, subtraction and multipli-
cation are more or less the same: proceed from right to left (when
written in the form x = anan−1 . . . a2a1a0.a−1 . . . a−k). To divide, we
also proceed from right to left.

For example, in Q7:
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. . . 30231.46 . . . 6142.05

+ . . . 04024.14 − . . . 1642.06

= . . . 34255.63 = . . . 4166.66

. . . 263

× . . . 154

. . . 445

. . . 141

. . . 263

. . . 455

. . . 615

. . . 153
)
. . . 421

. . . 161

. . . 230

. . . 153

. . . 400

. . . 4

. . .

Now we cap off this section by computing a p-adic square root.

Example 2.11. One might be prone to wonder if Qp is simply a dis-
torted view of R. We will do away with any such doubt by showing
that x2 + 1 = 0 is solvable in Q5 (in fact, in Z5), whereas it is clearly
unsolvable in R. To find a square root, we approach this computa-
tion using the notation of Hensel’s Lemma, which we prove in the next
section.

We have f(x) = x2 + 1, f ′(x) = 2x.
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f(x) ≡ 0 (mod 5)⇒ x2 ≡ 4 (mod 5),

which is solvable with a solution α1 = 2. Note that f ′(α1) = 4 6≡ 0
(mod 5). So by Hensel’s Lemma, there exists a 5-adic square root of
−1. If we set

f(α2) ≡ f(α1) + f ′(α1)β1p ≡ 5(1 + 4β1) ≡ 0 (mod 25),

then this means that f(α2) ≡ 1 + 4β1 ≡ 0 (mod 5). This gives β1 = 1.
So α2 = 2 + 1 · 5. Similarly,

f(α3) ≡ 25(2 + 14β2) ≡ 0 (mod 125)⇒ f(α3) ≡ 2 + 4β2 (mod 5),

which gives β2 = 2;

f(α4) ≡ 125(26 + 114β3) (mod 625)⇒ f(α4) ≡ 1 + 4β3 (mod 5),
so that β3 = 1. So

a = α1+β1 ·5+β2 ·52+β3 ·53+. . . = 2+1·5+2·52+1·53+. . . = . . . 1212.

We could have also started with α1 = 3 and obtained a second square
root.

2.4. Hensel’s Lemma. In this section, we restate and prove Hensel’s
Lemma, which formally establishes the connection between solving
equations modulo powers of primes and the p-adic expansions of num-
bers (i.e., the roots to polynomials with p-adic integer coefficients).

Theorem 2.12. Suppose f(x) = anx
n+an−1x

n−1+. . .+a2x
2+a1x+a0

is a polynomial with coefficients in Zp. Further suppose there is an
α1 ∈ Zp that satisfies both f(α1) ≡ 0 (mod p) and f ′(α1) 6≡ 0 (mod p).
Then there is a unique p-adic integer a such that f(a) = 0 and a ≡ α1

(mod p).

Note. What this theorem is essentially saying is that we can lift solu-
tions modulo all powers of p, provided that f ′(α1) 6≡ 0 (mod p), as we
did in example 2.8.

Remark. By f ′(x), we of course mean the formal derivative: f ′(x) =
nanx

n−1 + (n− 1)an−1x
n−2 + . . .+ 2a2x+ a1.
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Proof. To prove this, we construct a sequence of integers that converges
to a. Specifically, we construct a sequence α1, α2, . . . , αn, . . . that sat-
isfies the following conditions for all n ∈ N:
1) f(αn) ≡ 0 (mod pn)
2) αn ≡ αn−1 (mod pn−1)

Note. The second condition simply means that (αn) should be a co-
herent sequence.

We prove the existence of αn for all n ∈ N by induction. By as-
sumption, α1 exists; this is our base case. Now supposing that some
αk exists, we show that αk+1 exists. To find αk+1, since our sequence
should be coherent, αk+1 = αk + βkp

k, where βk ∈ Zp. Thus, should it
exist, we obtain

f(αk+1) = f(αk + βkp
k)

=
n∑

i=0

ai(αk + βkp
k)i

=
n∑

i=0

(aiα
i
k + iaiα

i−1
k βkp

k + p2km),m ∈ Zp

≡
n∑

i=0

aiα
i
k + βkp

k

n∑
i=0

iaiα
i−1
k (mod pk+1)

= f(αk) + f ′(αk)βkp
k.

Since f(αk) ≡ 0 (mod pk), we write f(αk) = pkl, l ∈ Zp. Then we
have pkl+f ′(αk)βkp

k ≡ 0 (mod pk+1), or equivalently, l+f ′(αk)βk ≡ 0
(mod p). Since by assumption f ′(αk) 6≡ 0 (mod p), we can invert it
modulo p, so βk does exist and is, in fact, unique. So we set αk+1 =
αk + βkp

k.
This completes the induction. So setting

a = α1 + β1p+ β2p
2 + . . .+ βnp

n + . . .

finishes the proof. �

Hensel’s Lemma is considered the p-adic analogue of Newton’s method
from real analysis because of the strategy of iterative approximation
of a root. This lemma establishes the natural correspondence between
solving equations modulo powers of p and solving equations in Qp.
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2.5. Basic Analysis in Qp. Although the p-adic numbers are signif-
icantly different from the real numbers, they do in fact bear many
similarities – they are both normed fields and complete metric spaces.
In fact, one deeper similarity is that the concepts from calculus can be
extended to the p-adic numbers.

In this section, we discuss the basics of analysis in Qp. In a certain
sense, limits (of sequences) are quite similar, but of course the notion
of “closeness” (i.e., ε−δ definitions) comes through the metric induced
by the p-adic absolute value, not through the metric induced by the
Euclidean absolute value. The fact that this metric is non-Archimedean
implies that checking the convergence of an infinite series is equivalent
to checking the convergence of the underlying sequence, so most of
p-adic analysis lies in the theory of power series.

The theory of derivatives in the p-adic world is developed, but defin-
ing functions as power series is much more powerful in this context.
This is because the analogues of the intermediate value theorem and
the mean value theorem don’t exist (technically, there is an intermedi-
ate value theorem for Qp, but it is far less interesting).

Integration in the p-adics is a much trickier subject and is beyond
the scope of this paper. The p-adic numbers are not an ordered field
and are non-Archimedean, which means that there is no concept of an
interval or a curve. The theory of p-adic integration lies in the concepts
of p-adic distributions, measures, and limits of Riemann sums; it even
requires considering Cp, the completion of the algebraic closure of Qp

(as Qp is not algebraically closed, and its algebraic closure, Q̄p, is not
complete) [4].

2.5.1. Sequences and Series. As mentioned above, a sequence (xn) in
Qp is Cauchy (i.e., convergent since we’re working in a complete metric
space) if and only if limn→∞ |xn+1−xn| = 0. This is simply because the
p-adic numbers are non-Archimedean, so it suffices to check the limit
of the underlying sequence to check the convergence of a series.

Recalling that the metric we’re working with is d(x, y) = |x− y|p =
1/pvp(x−y), high powers of p are “small” and small powers of p are
“large.” With this in mind, it follows that lim

n→∞
n! = lim

n→∞
pn = 0, while

lim
n→∞

n and lim
n→∞

1/n diverge.

The condition for convergence of a series also gives a nice bound on

the actual sum:

∣∣∣∣∣
∞∑
n=0

xn

∣∣∣∣∣ ≤ sup{|x0|, |x1|, . . . , |xn|, . . .}.
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Most basic results about convergence of series in R also apply to
the p-adic case. The difference with p-adic series is the extra non-
Archimedean property, giving us another angle from which to attack
sequences and series.

One more surprising result about p-adic series is that, unlike in the
real case, convergence implies unconditional convergence.

2.5.2. Derivatives. Just as when working with sequences in Qp, defini-
tions of continuity and derivatives remain unchanged except that the
notion of “closeness” is determined by the p-adic metric. In this light,
derivatives are similar to their real-valued analogues. So we can still
apply the power rule, the chain rule, and so on.

There are two problems to address, however. In differential calculus,
the two main theorems are the intermediate value theorem and the
mean value theorem.

The intermediate value theorem is proved more generally than in
the real numbers by considering the image of a connected set under a
continuous function. The problem with this in Qp is that the p-adic
numbers are totally disconnected – the connected components of Qp

are the one-element subsets. So while the intermediate value theorem
is still true, it doesn’t give us any useful or interesting information.

When considering a p-adic version of the mean value theorem, we
again run into the trouble that Qp is not an ordered field, so there is
no meaning to the statement “a < b.” In fact, just because two p-adic
functions have the same derivative does not mean that they differ by
a constant, as the case is in the real numbers. For this reason, when
considering analysis in the p-adic numbers, it is much nicer to work
with power series.

2.5.3. Power Series. One reason to define functions by power series in
Qp is that it is possible to prove a p-adic mean value theorem. Indeed,
if two functions defined by power series have the same derivative, then
they do differ by a constant. Thus, it is plain that working with power
series in the p-adic world solves a number of issues.

Much of the theory of power series is a natural transition from R.
For example, consider a power series

f(x) =
∞∑
n=0

anx
n.

Most of the same methods in finding the region of convergence work
just as in the Archimedean case, but one thing that is rather surprising
is that in order to check the boundary cases, we only have to check
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one case, as this gives us information about every boundary case. In
other words, if the radius of convergence is denoted by r, then whenever
|x|p < r, the series converges, and whenever |x|p > r, it diverges. To
deal with the boundary cases, suppose there is some α ∈ Qp so that

|α|p = r. Then
∞∑
n=0

anα
n converges if and only if

∞∑
n=0

anβ
n for all β ∈ Qp

with |β|p = r.
One other anomaly is that if a function defined by a power series

is periodic, then it must be a constant function. This is quite differ-
ent from real analysis, in which the basic trigonometric functions are
periodic (and clearly not constant).

Many other familiar results from the Archimedean case of the real
numbers do, however, carry over. We can add, subtract, multiply,
divide, and differentiate series just as usual (with the same radius of
convergence).

We conclude our treatment of analysis in Qp with a discussion of
two critical functions defined by power series, the p-adic logarithm and
exponential.

The p-adic logarithm and exponential, denoted logp(x) and expp(x),
respectively, are defined by

logp(x) =
∞∑
n=1

(−1)n+1(x− 1)n

n
, expp(x) =

∞∑
n=0

xn

n!
.

The logarithm converges for |x − 1|p < 1 and the exponential con-
verges for |x|p < p−1/(p−1). This is quite different from the real case,
where the exponential converges for all x ∈ R. This is because as n
tends to infinity, so, too, does n! (in the reals), so xn/n! tends to 0 for
any real number x. But in the p-adic case, as we saw before, n! gets
quite small, so xn/n! grows quite large.

As is to be anticipated, the p-adic logarithm and exponential behave
as they should:

logp(xy) = logp(x) + logp(y),

expp(x+ y) = expp(x) expp(y),

logp(expp(x)) = x,

expp(logp(1 + x)) = 1 + x.

It should be noted, however, that these identities only hold when x
and y are in the regions of convergence of the p-adic logarithm and
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exponential functions. For example, if p = 2, x = −2, then log2(−1) =
0, but exp2(0) = 1 6= −1.

3. The Local-Global Principle

Given Hensel’s Lemma, it is easy enough to see when we can find a
solution to some quadratic equation in Qp for some p. Now we focus on
finding solutions to such equations in Q. Clearly since Q ⊂ Qp for all
p ≤ ∞, if we can find any field of p-adic numbers (or the real numbers)
with no solution, then there is no rational solution. This means that if
there is a “global” solution (in Q), then there is a “local” solution (in
Qp) everywhere (for all p ≤ ∞).

The idea of the local-global principle is that if there is a rational
solution, then we can construct it by considering all of the local fields
(every Qp). In fact, Hasse-Minkowski’s theorem, better known as the
local-global principle, states that if f(x1, x2, . . . , xn) is a homogeneous
polynomial of degree 2 in n variables with rational coefficients, then
f(x1, x2, . . . , xn) = 0 has non-trivial solutions in Q if and only if it has
non-trivial solutions in Qp for every p ≤ ∞.

This proof of this theorem is the subject of the first half of Serre’s
A Course in Arithmetic[2]; in this section, we prove it for quadratic
forms in 3 variables.

Theorem 3.1. A quadratic form f(x1, x2, x3) with rational coefficients
has a non-trivial solution in Q if and only if it has a non-trivial solution
in Qp for every prime p ≤ ∞.

We follow the proof given by Cassels in Lectures on Elliptic Curves
[1].

As mentioned above, it is obvious that if there is a rational solution,
then there is a real solution and a p-adic solution for every p.

Now we can’t necessarily write the quadratic form as

f1x
2
1 + f2x

2
2 + f3x

2
3 = 0.

However, by appropriately transforming the quadratic form, we can
work with an equation in that form. It is plain that such a transforma-
tion carries rational points to rational points, as does its inverse. Thus,
we assume that we have such a form to begin with.

We can assume that f1, f2, f3 6= 0 since if any is equal to 0, then
we can set the two variables to 0 and the variable with 0 coefficient to
anything. We can also assume that f1, f2, f3 ∈ Z since we can multiply
through to clear the denominators. Further, we may assume that f1, f2
and f3 are square-free since for example, if f1 = ab2, then f1x

2
1 =



THE LOCAL-GLOBAL PRINCIPLE 15

ab2x21 = a(bx1)
2, so in this case, we replace x1 with bx1. Furthermore,

if gcd(f1, f2, f3) > 1, then we can divide out any common prime factors.
If for example, p | gcd(f1, f2), but p - f3, then we replace x3 by px3,
then we divide the whole equation by p. In any case, we end up with
f1f2f3 being square-free.

Thus, we need only prove the theorem for

f(x1, x2, x3) = f1x
2
1 + f2x

2
2 + f3x

2
3 = 0,

where f1, f2, f3, and f1f2f3 are all square-free.
In order to prove the theorem, we require the following two lemmas.

Lemma 3.2. Let m > 0 be an integer and let S ⊂ Rn with volume
V (S) > m. Then there are m + 1 distinct points s0, . . . , sm of S such
that si − sj ∈ Zn (0 ≤ i, j ≤ m).

Proof. Let W ⊂ Rn be the unit cube of points w with 0 ≤ wj < 1
(1 ≤ j ≤ n). Thus, every x ∈ Rn = w + z for some z ∈ Zn. Let χ(x)
be the characteristic function of S. Then we have that

m < V (S) =

∫
Rn

χ(x)dx

=

∫
W

(∑
z∈Zn

χ(w + z)

)
dw.

We know that V (W) = 1, so there is a w0 ∈ W so that∑
z∈Zn

χ(w0 + z) > m,

or equivalently, ∑
z∈Zn

χ(w0 + z) ≥ m+ 1.

So we set sj = w0 + z, where w0 is the real n-tuple that satisfies the
preceding statement. �

Lemma 3.3. Let Λ be a subgroup of Zn of index m. Let C ⊂ Rn be a
symmetric convex set of volume V (C) > 2nm. Then C and Λ have an
intersection point aside from 0 = (0, . . . , 0).

Proof. Let S = {c
2

: c ∈ C}. Then V (S) > m, so by lemma 3.2, there

are m + 1 distinct points c0, . . . , cm ∈ C such that 1
2
ci − 1

2
cj ∈ Zn,

where 0 ≤ i, j ≤ m. There are also m + 1 points 1
2
ci − 1

2
c0, where

0 ≤ i ≤ m and m cosets of Zn modulo Λ. So at least two of them have
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to be in the same coset (by the pigeonhole principle); i.e., there exist
i, j (i 6= j) so that 1

2
ci − 1

2
cj ∈ Λ. To finish the proof, we note that C

is symmetric, so −cj ∈ C; thus, 1
2
ci − 1

2
cj = 1

2
ci + 1

2
(−cj) ∈ C since C

is convex. �

Now that we have our two lemmas, we are ready to prove the local-
global principle.

Proof. We will divide the proof into three cases and define a subgroup
Λ of Z3 by certain conditions based on the three cases we consider. The
idea is to define Λ so that it is of order m = 4|f1f2f3|∞ with f(x) ≡ 0
(mod m) for any x ∈ Λ. Then we can apply the two previous lemmas
to conclude that f(x) = 0 for some non-trivial vector x, showing the
existence of a rational point.

If there is a (non-trivial) solution in Qp, then there is a vector a =
(a1, a2, a3) 6= 0 such that each ai ∈ Qp and f(a) = 0. If necessary, we
multiply a by some p-adic integer so that max{|a1|p, |a2|p, |a3|p} = 1 (if
a is a solution, then so is any multiple of a). Now we divide the proof
into three cases.

Case 1: p 6= 2, p | f1f2f3. Without loss of generality, we may assume
that p | f1; thus, since f1, f2, f3 are pairwise relatively prime, we have
that p - f2 and p - f3. This means that |f1a21|p < 1. Now if |a2|p < 1,
then

|f3a23|p = |f1a21 + f2a
2
2|p < 1,

|a3|p < 1.

Also,

|f1a21|p = |f2a22 + f3a
2
3|p ≤

1

p2
.

Now since f1 is square-free, it follows that |a1|p < 1. This contradicts
that max{|a1|p, |a2|p, |a3|p} = 1, so |a2|p = |a3|p = 1. But since |f2a22 +
f3a

2
3|p < 1, we divide by a2, and there is an rp ∈ Z, with f2 + r2pf3 ≡ 0

(mod p).
So we set x3 ≡ rpx2 (mod p), which implies that

f(x) = f1x
2
1 + f2x

2
2 + f3x

2
3

≡ (f2 + r2pf3)x
2
2

≡ 0 (mod p).
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Case 2: p = 2, 2 - f1f2f3. Without loss of generality, we know that
a2 and a3 are units. The only squares modulo 4 are 0 and 1, so it
follows that f2 + f3 ≡ 0 (mod 4).

So we impose the following conditions:

x1 ≡ 0 (mod 2)

x2 ≡ x3 (mod 2)

This means that f1x
2
1 ≡ 0 (mod 4) since x1 is either 0 or 2 modulo 4.

Note that f3 ≡ −f2 (mod 2) since 2 | 4. Thus,

f(x) ≡ f2x
2
2 + f3x

2
3

≡ f2x
2
2 − f2x22 ≡ 0 (mod 4).

Case 3: p = 2, 2 | f1f2f3. Suppose without loss of generality that
2 | f1. Then |a2|2 = |a3|2 = 1. Now any odd integer squared gives 1
modulo 8, so if |a1|2 < 1, then

f2 + f3 ≡ 0 (mod 8);

if |a1|2 = 1, then

f1 + f2 + f3 ≡ 0 (mod 8).

Now we impose the following conditions:

x2 ≡ x3 (mod 4)

x1 ≡ s∗x3 (mod 2),

where s∗ = 0 if f2 + f3 ≡ 0 (mod 8), s∗ = 1 otherwise. Then we have
that

f(x) ≡ f2x
2
2 + f3x

2
2 ≡ x22(f2 + f3) ≡ 0 (mod 8)

or

f(x) ≡ f1x
2
3+f2x

2
2+f3x

2
2 ≡ f1x

2
2+f2x

2
2+f3x

2
2 ≡ x22(f1+f2+f3) ≡ 0 (mod 8).

Hence, f(x) ≡ 0 (mod 8).
Now the subgroup Λ is of index m = 4|f1f2f3|∞ in Z3; f(x) ≡ 0

(mod 4|f1f2f3|∞) for any x ∈ Λ. So we apply lemma 3.3 to Λ and the
convex symmetric set
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C : |f1|∞x21 + |f2|∞x22 + |f3|∞x23 < 4|f1f2f3|∞.
Now the volume of this is

V (C) =
π

3
· 23 · |4f1f2f3|∞

> 23|4f1f2f3|∞
= 23m.

So (Λ ∩ C)\{0} is nonempty by lemma 3.3. For any x in this set,

f(x) ≡ 0 (mod 4|f1f2f3|∞).

Furthermore,

|f(x)|∞ ≤ |f1|∞x21 + |f2|∞x22 + |f3|∞x23 < 4|f1f2f3|∞,
thus implying that f(x) = 0, which proves the theorem.

�

Note. Nowhere in this proof was solvability in R = Q∞ used. This
means that we have an even stronger condition for conics: if a quadratic
form is solvable in Qp for every p <∞, then it is solvable in Q, and thus
solvable in R. This is, in fact, connected with quadratic reciprocity.
The connection is the Hilbert Product Formula. The Hilbert symbol,
(a, b)p, with a, b ∈ Qp, is defined by

(a, b)p =

{
1, if z2 = ax2 + by2 has a non-trivial solution in Qp,

−1, if z2 = ax2 + by2 has no non-trivial solution in Qp.

The Hilbert Product Formula says that
∏
p≤∞

(a, b)p = 1, so if (a, b)p = 1

whenever p < ∞, this implies that (a, b)∞ = 1. This is Hilbert’s
Reciprocity Law, which is, in fact, equivalent to quadratic reciprocity.

4. Using Local Information to Investigate Higher
Algebraic Forms

Given the proof of the local-global principle for conics, the natural
question to ask is if there is some way to extend the principle to higher
algebraic forms – cubic forms, biquadratic forms, and so on. The an-
swer is simply no. We show this with the following two examples.
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Example 4.1. The equation (x2− 2)(x2− 17)(x2− 34) = 0 has a root
in Qp for all p ≤ ∞, but has no roots in Q.

First consider p = 2. 17 is a quadratic residue modulo 2. In fact, 17
is a square modulo every power of 2. This means that we can patch
together square roots of 17 modulo various powers of 2 to compute a
2-adic square root of 17. So this equation is soluble in Q2.

Now consider p = 17. We have f(x) = x2 − 2, f ′(x) = 2x. Now
62 − 2 ≡ 0 (mod 17), but clearly 2 · 6 ≡ 12 6≡ 0 (mod 17). Thus, by
Hensel’s Lemma, there is a 17-adic square root of 2, and thus a 17-adic
root of this equation.

Now suppose p 6= 2, 17. If either 2 or 17 is a square in Qp, then
the equation has a solution in Qp. If, however, neither 2 nor 17 is a
square in Qp, then by basic quadratic residue theory (the product of
two non-residues is a residue), their product, 34, is a square modulo p,
and we can thus use Hensel’s Lemma to find a root of the equation.

For p = ∞, this equation is factored, so the roots are ±
√

2,±
√

17,
and ±

√
34. Clearly none of these is rational.

So this is an example that would violate any attempt to extend the
local-global principle.

Example 4.2. The equation x4 − 17 = 2y2 is locally solvable every-
where, but is not solvable in Q.

By theorems on elliptic curves, it can be determined that over any
finite field with p ≥ 5, a curve of genus 1 has a point. This point can
then be lifted to a solution in Zp. Thus, there are solutions for any
Qp. The only special cases to consider, then, are Q2,Q3, and Q17. Of

course, setting x = 3, y = 4
√

2 gives a real solution.
Now we show there are no rational solutions. Suppose to the contrary

that (x, y) is a solution. Set x = a
c

with a, c coprime. Then

x4 − 17 = 2y2 = (a/c)4 − 17 = 2y2

= a4/c4 − 17 = 2y2

⇒ a4 − 17c4 = 2y2c4 = 2(yc2)2

So we have a4−17c4 = 2b2, with a, b, c pairwise relatively prime. Now
set A = a2, C = c2, so that A2 − 17C2 = 2b2. This equation is solvable
everywhere locally, and hence globally; in particular, 52−17 ·12 = 2 ·22

is a solution.
Now

(5A+ 17C + 4b)(5A+ 17C − 4b) = 17(A+ 5C)2.
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If there is a common prime factor p > 2 that divides both factors on the
left side, then it divides 5A+17C and A+5C, implying that it divides
both 8A and 8C, so it divides A and C since the only prime divisor of
8 is 2. So p divides both a and c, a contradiction (they are relatively
prime). Now both factors on the left-hand side of the equation must
be positive, so for integers u and v, there are two cases:

Case 1: We have

5a2 + 17c2 ± 4b = 17u2,

5a2 + 17c2 ∓ 4b = v2,

a2 + 5c2 = uv.

This implies that (upon adding the first two equations),

10a2 + 34c2 = 17u2 + v2,

a2 + 5c2 = uv.

Let’s consider this modulo 17. 10 is a quadratic non-residue modulo
17, so 10a2 ≡ v2 (mod 17) has no solution; this is a contradiction.

Case 2: We have that

5a2 + 17c2 ± 4b = 34u2,

5a2 + 17c2 ∓ 4b = 2v2,

a2 + 5c2 = 2uv.

This shows that

10a2 + 34c2 = 34u2 + 2v2

⇒ 5a2 + 17c2 = 17u2 + v2.

Now 5 is also a quadratic non-residue modulo 17; hence, 5a2 ≡ v2

(mod 17) has no solution, so both cases lead to a contradiction.
Thus, these contradictions in Z/17Z show that (x, y) cannot possibly

be a rational point.

These two examples illustrate that the local-global principle is not
true for higher forms. Nevertheless, the principle that investigating
local solutions to an equation may be of use in investigating global
solutions holds. On the other hand, if one can show that there is any
local field over which an equation is unsolvable, then that of course
does show the nonexistence of global solutions.
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One of the most famous unsolved problems in mathematics is the
Birch and Swinnerton-Dyer Conjecture, which roughly states that the
number of global solutions is entirely determined by local information.
This is not exactly a direct extension of the local-global principle, but
it does emphasize the importance of patching together a global solution
out of local information. While nothing as strong as the local-global
principle holds for higher forms, what remains clear is that the idea of
gathering information from local fields is useful in constructing global
solutions.
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