Mean minimizes L^{2} norm

The minimum of

$$
f(c)=\sum_{i=1}^{n}\left(x_{i}-c\right)^{2}
$$

happens at $c=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ (the average of the points).
The idea is to multiply everything out and complete the square. I.e., write this function in the form $f(c)=a\left((c-q)^{2}+p\right)$. Then the minimum will occur at q.

Simple motivating example.

Let $x_{1}=3, x_{2}=5$. Let's write $\left(c-x_{i}\right)^{2}$ instead of $\left(x_{i}-c\right)^{2}$ (this has no effect because of the squaring). So we want to minimize

$$
(c-3)^{2}+(c-5)^{2}
$$

Multiply everything out and obtain

$$
c^{2}-6 c+9+c^{5}-10 c+25=2 c^{2}-16 c+34
$$

Factor out a 2, and add a clever form of 0 :

$$
2\left(c^{2}-8 c+17\right)=2\left(\left(c^{2}-8 c+16\right)-16+17\right)
$$

Of course, $c^{2}-8 c+16=(c-4)^{2}$, so this is simply

$$
2\left((c-4)^{2}+1\right)
$$

The minimum clearly occurs at $c=4$.

More general proof.

Write

$$
f(c)=\sum_{i=1}^{n}\left(c-x_{i}\right)^{2}=\sum_{i=1}^{n}\left(c^{2}-2 c x_{i}+x_{i}^{2}\right)
$$

This is

$$
\begin{gathered}
=n c^{2}-2 c \sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} x_{i}^{2} \\
=n\left(c^{2}-\left(\frac{2}{n} \sum_{i=1}^{n} x_{i}\right) c+\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) .
\end{gathered}
$$

Now complete the square by adding a clever form of $0:\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}$. Thus we obtain

$$
n\left(\left(c^{2}-\left(\frac{2}{n} \sum_{i=1}^{n} x_{i}\right) c+\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}+\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}\right)\right)\right.
$$

The first three terms can be rewritten nicely:

$$
n\left(\left(c-\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}+\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}\right)\right)
$$

This clearly attains a minimum at $c=\frac{1}{n} \sum_{i=1}^{n} x_{i}$, which is the mean. So we can minimize this expression by computing the (arithmetic) mean in linear time.

One could also show that the constant $\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}$ is ≥ 0. Simply apply Cauchy-Schwarz with vectors $\vec{u}=\left(x_{1}, \ldots, x_{n}\right), \vec{v}=(1 / n, \ldots, 1 / n)$. (Though this is unnecessary for this problem.)

