
1 Median minimizes L1 norm

This is how I’d do this problem, but this level of detail isn’t required for full credit on
the problem.

The minimum of

f(c) =

n∑
i=1

|xi − c|

happens at c = median{x1, . . . , xn}. When n is odd, the value for c is uniquely determined.
If n is even, we can use either median, or any point in between them.

The median can be computed in O(n) expected time using the algorithm similar to
quicksort: see pages 10-12 of this .pdf: https://people.eecs.berkeley.edu/~vazirani/
algorithms/chap2.pdf

In fact, this algorithm can be massaged to work in guaranteed O(n) time. See here:
http://web.mit.edu/~neboat/www/6.046-fa09/rec3.pdf

Some motivating graphs.

When n is odd:

When n is even:

1

https://people.eecs.berkeley.edu/~vazirani/algorithms/chap2.pdf
https://people.eecs.berkeley.edu/~vazirani/algorithms/chap2.pdf
http://web.mit.edu/~neboat/www/6.046-fa09/rec3.pdf

Proof of correctness.

Write |xi−c| as
√

(xi − c)2 =
√

(c− xi)2. Compute the derivative (with respect to c) as∑n
i=1

c−xi

|c−xi| . We want to find critical points: f ′(c) is never zero, so the only critical points

are when the derivative is undefined. This happens when the argument inside the absolute
value is 0 (recall |x − a| is always continuous, but not differentiable at a — just note that
limx→a+

x−a
|x−a| = 1, but limx→a−

x−a
|x−a| = −1).

First suppose n is odd, so the median is well-defined and unique. Consider one term
of the derivative c−xi

|c−xi| . This is undefined at xi, but is ±1 depending on which side you’re

on. Now at any point on the open subintervals where f is differentiable to the right of the
median, c−xi > 0 for more of the terms than < 0, so the derivative is positive and f is thus
increasing. For any point to the left of the median (where f is differentiable), c−xi < 0 for
more of the terms than > 0, so the derivative is negative and thus f is decreasing. So f is
always increasing on (µ,∞) and always decreasing on (−∞, µ), where µ is the median, so
the median minimizes the L1 norm.

Now suppose n is even: same argument applies. Let the two middle elements be
µ1, µ2(µ1 < µ2). To the right of µ2, more terms satisfy c− xi > 0 than < 0, so increasing.
To the left of µ1, more terms satisfy c− xi < 0 than > 0, so decreasing.

Between µ1 and µ2, the slope is 0 (i.e., the function is constant between them). To see
this, since we have an even number of terms excluding the two medians, their contributions
to the derivative cancel out. So it suffices to show that for a < b, |x−a|+ |x−b| = b−a (and
thus the derivative is 0 between the two medians). This means we can choose any point in
the closed interval [µ1, µ2]. Simply interpret this as |x− a| being the distance from a to x,
and |x− b| = |b−x| as the distance from x to b. Since a < b, and we’re on a horizontal line,
equality holds.

2 k-selection problem from midterm

How can we find the k smallest elements of an array efficiently? Note: the k elements
we find don’t need to be in sorted order!

Solution 1 (bad): Sort the array in O(n log n) time and grab the first k elements.

Solution 2 (decent): Use the heap method gone over in a previous recitation (see
pollard rho 092917.pdf) for O(n log k) time. Then this (max) heap (which contains k
elements) is precisely the set of the k smallest elements of the original array.

Solution 3 (good): Use the quicksort-like method to find the kth smallest element.
Note that because of the partitions used, every element to the left of the kth smallest will
be smaller and everything to the right will be larger at this point. So we can just grab the
k smallest elements of this array. This takes expected O(n) time. If this algorithm is not
clear to you, create a data set and run through the calculations like we did in discussion.

Note that (see link above in the median problem) there is a version of this algorithm that
runs in worst-case O(n) time if we care about worst-case time for some reason. (In practice,
the expected-time algorithm is much better: the constants hidden in the deterministic
O(n) time are horrendous.) It’s not important to know the details of the worst-case O(n)
algorithm, just be aware that it exists.

(Use Solution 2 if you’re actually asked to find the median, kth smallest, etc. in an
interview! Coding the partition stuff, and getting the recursion right, on the fly will be a
disaster, but calling the PriorityQueue Java class (or whatever language) will give you a
nice 10-line solution.)

2

3 Inserting into a binary search tree

http://www.algolist.net/Data_structures/Binary_search_tree/Insertion

4 Deleting from a binary search tree

http://www.algolist.net/Data_structures/Binary_search_tree/Removal

3

http://www.algolist.net/Data_structures/Binary_search_tree/Insertion
http://www.algolist.net/Data_structures/Binary_search_tree/Removal

	Median minimizes L1 norm
	k-selection problem from midterm
	Inserting into a binary search tree
	Deleting from a binary search tree

