
Hashing and Digital Signatures Notes
Aaron Blumenfeld

ElGamal: Public α, p. Choose a secret a and make β ≡ αa public. To send a message, choose
random k and send (r, t), where r ≡ αk, t ≡ βkm. Decryption: tr−a ≡ m (mod p).

ElGamal Signatures: Public: α, p, β, where β ≡ αa, secret a. To sign m, choose random k with
(k, p− 1) = 1. Let r ≡ αk (mod p), s ≡ k−1(m− ar) (mod p− 1). The signed message is (m, r, s).
To verify, let v1 ≡ βrrs (mod p), v2 ≡ αm (mod p). Valid iff v1 ≡ v2 (mod p).

Hash Functions: Want h(m) easy to compute, preimage resistant (hard to find any preimage),
and strongly collision-free (hard to find m,m′ with h(m) = h(m′)). Weakly collision-free: given an
m, hard to find m′ with h(m′) = h(m).

Birthday Attack: Given N objects, if r people choose an object (with repetition), the probability

that two people choose the same object is roughly 1 − e−r
2/2N . For r2/2N = log 2, we have

r ≈ 1.77
√
N , and the probability is 50% of having a match.

In cryptography setups, we have two rooms, each with r people choosing (with repetition) among

N objects. The probability of a match in room 1 and room 2 is roughly 1−e−r2/N . The probability
of i matches is (r2/N)ie−r

2/N/i!. Taking r =
√
N gives us a good chance of finding a match. If

need, can change r to be something like 5
√
N . This can be used in a way similar to Baby Step

Giant Step for computing discrete logs.

If a hash function spits out a small output (n-bits). There are N = 2n possible outputs, take
r = 2n/2+k for some small k to find a collision. Find n/2+k places to change spacing, commas, etc.
in a fraudulent document and hence make 2n/2+k different documents. Also make 2n/2+k different
legitimate documents. Make two lists of length 2n/2+k of the hashes and find a match using the
birthday paradox. The probability of finding a match is 1 − exp (22k) ≈ 1 even for k = 3. Then
have Alice sign the corresponding legitimate document and append her signature to the fraudulent
document.

Blind Signatures: (For RSA). To get A to sign m, choose a random r with (r, n) = 1 and calculate
m′ ≡ mre (mod n). Since r is random, so is re (r 7→ re is a one-to-one map). Hence m′ is quite
likely meaningless. So have Alice sign m′, giving you s′ ≡ m′d ≡ (mre)d ≡ rmd. Then divide by r,
and you’ve got Alice’s signature for your message m.

The Digital Signature Algorithm: Assume for simplicity signing a 160-bit message. Alice
chooses q prime that is 160 bits long with q | p − 1. Discrete logs should be hard for this p. Let
g be a primitive root (mod p), put α ≡ g(p−1)/q. Alice chooses a secret a (mod q) and computes
β ≡ αa (mod p). (p, q, α, β) is public, a is secret.

Alice signs m: chooses random k (mod q), calculates r ≡ αk (mod p) (mod q), s ≡ k−1(m + ar)
(mod q). She sends (r, s) to Bob, along with m. Bob verifies: calculates u1 ≡ s−1m (mod q), u2 ≡
s−1r (mod q), v ≡ αu1βu2 (mod p) (mod q). Signature is valid iff v ≡ r.

Chapter 10: Security Protocols: To avoid intruder-in-the-middle attacks, need certification
and validation. Certification binds a public key to some entity (e.g., Bob ↔ (eB , nB)). Validation
guarantees the certificate is valid. Certification Authorities (CAs): Verisign (57%), Comodo (8.3%),
GoDaddy (6%), etc.

CAs are assumed to be trustworthy. They produce their own certificate and sign it. It is posted on
website (sometimes packaged with browsers). For a fee, CAs will produce a certificate for clients
(possibly smaller companies). Here, trust is critical. Different CAs trust each other, so Alice and
Bob having different CAs should be a nonissue. RAs (registration authorities) are often authorized
by CAs to sign certificates; fairly complex hierarchy networks of internet trust are thus established.

For example, if you attempt to view the certificates on the WeBWorK page, you will see “Could not
verify this certificate for unknown reasons.” If you’re still taking Calculus classes, you can blame
Eve for diverting your answer submissions when asking for an extension.

1


